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Solving fordl and F–dl

.
~6Kl,’ – 2F’

d,=$–
3

ON MICROWAVE THEORY

(39)

By substitution in (38)

8Ktj’ + 8Kij4F’ = 3F’. (40)

Upon solving

and

1
Ii’i,z = C where F = —– .

2 QE

(41)

(42)

Upon substituting into the equation for normalized sus-

ceptance of an iris in circular waveguide, (14) is

obtained.

(43)

whence

AND TECHNIQUES September

(44)

APPENDIX 111

The window coupling factor defined by Nelsonl for a

circular iris in a plane transverse to the direction of

propagation in a circular guide is

’102=[XWH’ (45)

The diameter of a centered circular iris hole in circulw-

waveguide is determined from the expression of a nor-

malized shunt susceptance of a circular aperture

transverse plane of the circular waveguide, g thus

B Aq’-( D’
—— –2.344

l-o – 2D 8.4M )

in the

(46)

where M, the magnetic polarizability factor, is equal to

dz3/6 for a centered circular aperture of diameter dz.

Solving (45) and (46) assuming D2/8.4M>>2.344 for

values of dt <0.5 inch

(47)
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I. INTIWDUCTiON

T

HIS P.lP~R examines the transmission of electro-

magnetic power through a dissipative uniform

waveguide simultaneously utilizing a number of

the proper modes of the guide. .4t any frequency, the

power dissipated within the guide is a function of the

relative amplitude and phase of the various modd con-

stituents. The problem of transmitting in an optimal

fashion is reduced to a weighted eigenvalue problem in

which the maximum efficiency occurs as an eigenvalue

of the required distribution of the excitation among the

various modes as the corresponding eigenvector. Nu-

merical results are presented for the case of a circular

Waveguide, ViThile the form of these numerical results is



1962 Kahn: Power Transmission Through Uniform Waveguides 329

certainly interesting, the gain relative to conventional

single-mode transmission is slight.

Physically the problem considered for waveguicfe is

closely related to the Borrrmmn effect in transmission

of .X rays through crystals.1 Both may be understood

in terms of destructive interference of fields at just those

points at which dissipative matter is localized: herein

the guide walls. In cavity measurements of dielectric

constant at microwave frequencies, for example, the

same interference phenomena may also produce sig-

nificant departures from results of elementary trans-

mission line calculations. z

The fundamental electromagnetic considerations are

conveniently developed with the aid of the 6-vector

operator formulation of the electromagnetic field equa-

tions as given by Bresler, Joshi and lbfarcuvitz.3 The

conventions and notation introduced by them will also

be found convenient for purposes of this paper. I n the

interest of brevity these will not be repeated.

The electromagnetic field within the guide is to con-

sist of a superposition of modes, *C+ ~E, iH\ and

ad joint modes @a+, normalized to N.= (@a+, I’,@J,

w(r) = ~ Ca(z)ma(p) ; (1)

cd(z) = ca(z”)6+f ’”(’–’o), (2)

where the Ca(zo) are Fourier coefficients

.V.C. = (~.+, raw) (3)

determined at z = z,. In view of the representation (1) a

scattering transfer- matrix formalism for M modes may

be introduced

w.(z) = T.(2, Zo)y,,(zo), (4)—

in which

y.(z) = [Ca(z)] ; (5)

T.(z, zo) = exp { iK(z – ZO)} ; (6)

‘}K=diag~Ka , a=l,2, . . ..M. (7)

II. THE POW’E~-ASSOCI~TED Q[TADRATTC FORM

The net-time-average power flow in the direction Z“

across a plane transverse to the guide axis associated

with a field W(Z) is

P...(z) = +(w, r. w), (8)

the real part of the integral of the complex Poynting

vector over the guide cross section at z. In terms of the

1 E. hIayer, “ilbso,-ptioli of X-f{ays in Pcrfwt Crystals, ” Ph. fl
dissertation (Physics), Polytechnic [rrst. of Brooklyn,, h-. Y.; June,
1952. See also G. Borrmann, ‘[[~her Ex?inlctions-dlagramme von
Qum-z, ” Phys. Z. vol. 42, pp. 157–162; Jull- 15, 1911; H, Cole,
F. IV. Chambers and C. G. t~ood, “X-ray polarizer, ” ~. .4PP1. Phy.>.
\-ol. .$2, pp. 1942–1 945; Cktohcr, 1961.

2 G. Persky and H. hI. Ntschuler, “Dissipation in ITniform (Di-
electric Filled ) t~ave~y] ides, ” L[icrowave Res. [nst., I’olytechnic
Tnst. of Brooklyn, N. ‘k’., Electrophysirs ~Iemo. 69, PTf3MRI-946-
61; September, 1961.

q ~. D. Bresler, G. H. Joshi and N. Marcuvitz, “Orthc)gonality
properties for modes in passive and active uniform waveguides, ” Y.
.lppl. PhyS., VO1.29, pp. 794-799; MaV, 1958.

transfer forlnalism (4) and the (Hermitian, matl ix)

inner product (8) becomes

(9)

provided the elements of the MX M matrix, ~,= [pa,],

are defined as

(10)

From the definition (10) and the Hermit-ian character

of rz = 1’,+, it follows that ~.= ~.+. The simplification

for conventional Iossless waveguides, for which the

modal problem is self -ad joint, o.+= o., is due to the

fact that (10) then coincides with the orthogonalit~-

relations an(i }.P = lVa~.P.

If representations, Xl?, alternative to the scattering

representation (4) are introduced through

(11)

where 11 is a nonsingular transformation, the appropri-

ate weight operator p follows from the necessary invari-

ance of (9) :

p = Ll+p,u. (12)

N’ote ~ remains Herrnitian. Subsequently the subscript

s will be (iropped when the particular representation is

irrelevant.

Special simplifications in the fornl of ~ result from

any symmetries the waveguide TTI:Ly possess in additi(on

to the translational symmetry assumed initially. The

most important such symmetry is invariance under re-

flection in any plane transverse to the guide axis. The

31= 21V modes then occur in natural pairs, @a and its

mirror image designated @.v+a, with propagation con-

stants K. and — K., respectively. The matrix ~, therefore

has the appearance

(1!.3)

in which ~ and 03 are Hermitian NX N subrnatrices.

The circular waveguide, employed later for numerical

results, also has rotational symmetries. .~ p<lrticular

consequence is that all terms in ~ coupling the low-loss

Ho,, (TEO,,) modes to the remaining mode types of the

guide wlnish.

III. OrTIMAI. TRAN$MISSION

Consicfer the utilization of a section of dissipative

wavcguide for the transmission of power in such manner

that the fraction of the input power absorbed by the

guide is minin~ized. An efficiency lnay be defined by rhe

power ratio
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wherein it is understood that ~ = I(zO) and T = T(z, ZO);

clearly, q may take on any real value. ?Sow let Y be

constrained so that

(y, ~y) = 1, (15)

then minimum loss corresponds to the maximum value

of q, and for passive guides TS 1.

The excitations, subject to the constraint (15), about

which q is stationary are among the solutions of

6{ (y, T+p@ – e[(y, @) – 1]} = o (16)

without special constraints. These particular excitations

are solutions of the weighted eigenvalue problem

[T+~T – Oyp]g, = ~ (17)

which may be normalized to satisfy (15). Substitution

into (14) yields q = O?. Hence the maximum such eigen-

value 07 is the maximum efficiency, and the correspond-

ing eigenvector proportional to the required excitation.

It is clear that only real eigenvalues can be inter-

preted as efficiencies, and the eigenvalues O, were tacitl>-

assumed real. .411 eigenvalues for which the correspond-

ing eigenvector may be normalized as required are in-

deed real, for

(T+~T@.y, Q,) – (Q.,, T+PT@) = O (18a)—

(0,” – 0,) (Q,, pg,) = 0. (18b)

This formalism has also been employed in connection

with conventional 2N-port networks, and additional

interesting results applicable to this special case have

been obtained .45

ll;. NUMIZRIC~L RESULTS

The general theory of the preceding sections was ap-

plied to circular waveguide. This type of guide has pres-

ently aroused wide interest in connection with low-loss

transmission via the circular electric, i.e., the Ham modes.

Dissipation was introduced through specification of a

complex surface impedance boundary condition at the

guide wall, radius a,

E= Z.HX V“. (19)

Correspondence with the metallic wa~-eguide is estab-

lished on setting

dm M(1 – i) 12
z= ——— 8=

d
—1 (20)

co 2’ p claw

4 L. B. Felseu ancf 141. K. Kahn, Proc. Sywp. on ibfdlimeter
Waves, Polytechnic Inst. of Brooklyn, NT. Y.; March 31, April 1, 2,
1959.

6 W. K. Kahn, “A Theoretical and Experimental Investigation in
Multimode Network and Waveguide Transmission,” D.E.E. disser-
tation, Polytechnic Inst. of Brooklyn, X’. Y.; June, 1960.

where k = cotipoeo and u is the conductivity (ohm-cm)-l

of the guide walls. Only selected results are given here;

for details of calculation as well as additional conlputa-

tions reference may be had to the original dissertation.5

As was previously indicated, due to the symmetries

of the guide the Ho,, modes may be treated independ-

ently of any other mode type. The general nature of the

results are illustrated by Figs. 1 and 2. In Fig. 1 the

efficiency in optimal transmission utilizing the first two

such modes (M= 2), propagating in the +Z direction,

v-,, is compared with conventional transnlission utilizing

only the first of these modes ql. The ratio

(21)
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Fig. l—Relative efficiency of opti ma! direct-wave transmission L

&
d’

E

~“‘1 LENGTH OF SECTION AS PARAMETER, z/a
+
a
m 10

g~p
6

M
4

ka

20 8
2 %

,
-01 0 01 02 0:3 0’4 o’5

*

EXCITATION RATlO, Re {@,2/@,l }

=2

=900

=0010

Fig. 2—Excitation in optimal direct-wa~-e transmission, H,x,

TABLE I

I .Lsymptotic Efficiency Ratio, 1( m )
ko

9
14
16
18
20

.I M=2 M=3

0,091
0.088 0.118
0.090 0.118
0.088 0.115
0.089 0.117
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plotted as a function of (z –z”)/a for the values ka = 9.0

and 6/2a = 0.010. Even for this rather dissipative guide

the improvement is seen to be slight. The as>-mptotic

value of A(m ) approached as (z —zO)/a—> ~ is indicated

by the arrow at the lower right. In !iig. 2 the ratio of the

two components of the excitation ~,, (zo) = Q., p are

plotted in the complex plane with (z — ~o) /a as a paraln -

eter for the same values of km and ~/2u. For short

lengths of guide the ratio A is increased by a factor of

about 5 if the reflected waves are also optimally acl-

justed, i.e., .$[= 21V= 4 modes (two waves propagating

in the +Z and two in the —z direction) are employed.

The asymptotic value of A has been computed for two

and three modes propagating in the +Z direction for

several values of ka. There are listed in Table I.
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Further Considerations on FabryJ?erot

Type Resonators*

WILLLMYI CULSHAW~, SENIOR MEMBER, IRE

SummarrJ-An integral equation valid for Fabry-Perot type
resonators with reflectors of arbitrary curvature and spacing is de-

rived, and equations for the planar, confocalj and spherical geometries
are considered further. A numerical iteration method is used to solve

the equations, and the properties of the various solutions for the dif-
ferent kernels are discussed. Results show that the confocal type has
the lowest diffraction loss, and that the losses in the planar- and
spherical-type geometries are identical, as are the normal mode
field distributions over the reflectors, apart from a change in sign of

the phase angle. Variational methods are applied to give results for

the eigenvalues of the planar geometry with great facility, particularly
for cases where the eigenvalues are closely spaced. Some potential

uses and the respective merits of the resonators are briefly men-

tioned.

1. INTRODUCTION

F

REE-SPACE resonators, analogous to the optical

Fabry-Perof- interferometer, continue to play :L

dominant role in measurements and physical de-

vices for very short microwaves, and also in the new

devices for producing coherent light [1 ]– [4]. Previous

work has discussed the application of this interferometer

to millimeter wavelengths [5], [6], an important result

being that coupling to such resonators could be effected

by a whole series, or grating, of coupling holes over the

area of the metallic reflector. Such a method can obvi-

ously be applied to reflectors of arbitrary shape [7], and

is most useful for very short microwaves where optical

methods, such as multilaver dielectric films, are not easy

* Received January 22, 1962; revised manuscript rereived May 14,
1962.

~ Microwave Physics Laboratory, General Telephone aud Elec-
tronics [laboratories, Incorporated, Palo Alto, Calif

to appl>’. The planar type of reflector system, due to

the absence of mode degeneracy, possesses some ad-

vantages in routine measurements of w~velength and

dielectric constants [8]. Diffraction losses, though

larger for ~iven dimensions than those of the ~OnfO~al-

t~-pe resonator [9], can still be made small at the shorter

wavelengths, and their effect on measurements reduced.

However, for a given wavelength and reflector size, such

losses do limit the Q value obtainable, and for some pur-

poses such as filter applications, ancl threshold condit-

ions in lasers, the confocal type may be preferable.

However, the planar geometry, though more critical in

adjustment and in the degree of flatness required,

readily permits single-mode operation, and potentially

gives a kmger power output than the confocal.

one of the difficulties in evaluating the qualit}- of

these free-space resonators is that of diffraction. This

leads to diffraction losses and to phase changes which

differ slightly from those corresponding to plane wave

propagation. The application of integral equations for

the solution of such problems was indicated by Goubau

and Schwering in their work on the guided propagation

of electromagnetic wave beams [10], [11]. Fox and Li

[12] also considered various resonator types, and set up

the integral equations using the Huygens-Kirchhoff cfif -

fraction theory. Numerical solutions for the eigenvalues

and eigenfunctions, or field distribution, were obtained

by computing the steady state reached after a large

number of bounces between the reflectors. Boyd and

Gordon [13 ] also considered the confocal I-ype resonator

in some detail. This arrangement is somewhat unique


