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Solving for dy and F—d,
2F  +/6K,? — 2F*

dy= — & ——F———
3 3
' _ V6K, — 2F?
F—d =—F R (39)
3 3
By substitution in (38)
8K, + 8K,AF? = 3F°. (40)
Upon solving
K il (41)
L2 N \/Q
and
£ 1
K;?*=— where F = —. (42)
L

Upon substituting into the equation for normalized sus-
ceptance of an iris in circular waveguide, (14) is

obtained.
B 2 A\?2
I
Yo wK,;\\/
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whence

B 24/2 AM\2
— = "‘\{" Or (—) . (44)

Yo m )\q/
AprpeENDIX I1I

The window coupling factor defined by Nelson! for a
circular iris in a plane transverse to the direction of
propagation in a circular guide is

-G

The diameter of a centered circular iris hole in circular
waveguide is determined from the expression of a nor-
malized shunt susceptance of a circular aperture in the
transverse plane of the circular waveguide,® thus

B\ [ D
= 2.344
Vo 2D\8.4M

(45)

(46)

where A/, the magnetic polarizability factor, is equal to
d»3/6 for a centered circular aperture of diameter ds.

Solving (45) and (46) assuming D?/8.411>>2.344 for
values of d»<0.5 inch

, 0.561)\,/*D

b= o 47
)\2\/0102 ( )

Power Transmission Through General
Uniform Waveguides®

WALTER K. KAHNY, SENTOR MEMBER, IRE

Summary—The problem of transmitting electromagnetic power
through a dissipative waveguide in an optimal fashion is examined.
At any frequency the problem is reduced to a weighted eigenvalue
problem in which the maximum efficiency appears as the eigenvalue
and the required excitation is specified by the corresponding eigen-~
vector. Numerical results are presented.
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Multimode Networks and Waveguide Transmission,” submitted in
partial fulfillment of the requirements for the D.E.E. degree at the
Polytechnic Institute of Brooklyn, N. Y. The dissertation has also
appeared as Research Report PIBMRI-818-60 at the Institute.

T Microwave Research Tustitute, Polytechnic Tnstitute of
Brooklyn, Brooklyn, N. Y

1. INTRODUCTION
T HIS PAPER examines the transmission of electro-

magnetic power through a dissipative uniform

waveguide simultaneously utilizing a number of
the proper modes of the guide. At any frequency, the
power dissipated within the guide is a function of the
relative amplitude and phase of the various modal con-
stituents. The problem of transmitting in an optimal
fashion is reduced to a weighted eigenvalue problem in
which the maximum efficiency occurs as an eigenvalue
of the required distribution of the excitation among the
various modes as the corresponding eigenvector. Nu-
merical results are presented for the case of a circular
waveguide. While the form of these numerical results is
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certainly interesting, the gain relative to conventional
single-mode transmission is slight.

Physically the problem considered for waveguide is
closely related to the Borrmann effect in transmission
of X rays through crystals.! Both may be understood
in terms of destructive interference of fields at just those
points at which dissipative matter is localized: herein
the guide walls. In cavity measurements of dielectric
constant at microwave frequencies, for example, the
same interference phenomena may also produce sig-
nificant departures from results of elementary trans-
mission line calculations.?

The fundamental electromagnetic considerations are
conveniently developed with the aid of the 6-vector
operator formulation of the electromagnetic field equa-
tions as given by Bresler, Joshi and Marcuvitz.? The
conventions and notation introduced by them will also
be found convenient for purposes of this paper. In the
interest of brevity these will not be repeated.

The electromagnetic field within the guide is to con-
sist of a superposition of modes, ®a—>{E, {H} and
adjoint modes ®,%, normalized to N,= (®,*, I".®,),

W(r) =2 Ca(3)®u(p); (1
CQ(Z) = C,,(Zo)€+]K“(Z_ZU), (2)

where the C.(z,) are Fourier coefficients
NoCo = (@, TW) (3)

determined at z=13,. In view of the representation (1) a
scattering transfer-matrix formalism for M modes may
be introduced

¥, (5) = T3, 20)¥.(20), €Y

in which
Vi(z) = [Ca®]; 5
T.(2, 20) = exp {ix(z — 20)}; (6)

K=diag{:<a}, a=1,2,--- M. {(7)

II. THE POWER-ASSOCIATED QUADRATIC FORM

The net-time-average power flow in the direction z°
across a plane transverse to the guide axisassociated
with a field ¥ (z) is

Pav(z) = %(‘Ij‘) PZ \F.), (8)

the real part of the integral of the complex Poynting
vector over the guide cross section at z. In terms of the

LE. Mayer, “Absorption of X-Rays in Perfect Crystals,” Ph.D
dissertation (Physics), Polytechnic Inst. of Brooklyn, N. Y.; June,
1952. See also G. Borrmann, “Uber Extinktions-diagramme von
Quarz,” Phys. Z. vol. 42, pp. 157-162; July 15, 1941; H. Cole,
F. W. Chambers and C. G. Wood, “X-ray polarizer,” J. Appl. Phys.
vol. 32, pp. 1942~1915; October, 1961.

2 G. Persky and H. M. Altschuler, “Dissipation in Uniform (Di-
electric Filled) Waveguides,” Microwave Res. Inst.,, Polytechnic
Inst. of Brooklyn, N. Y., Electrophysics Memo. 69, PIBMRI-946-
61; September, 1961.

3 A. D. Bresler, G. H. Joshi and N. Marcuvitz, “Orthogonality
properties for modes in passive and active uniform waveguides,” J.
Appl. Phys., vol. 29, pp. 794-799; May, 1958.

Kahn: Power Transmission Through Uniform Wavegvides 329

transfer formalism (4) and the (Hermitian, matiix)
inner product (8) becomes

Poul) = (., p: L) (9)

provided the elements of the M X M matrix, 2, = [pas],
are defined as

pas = 3(Pu, T By). (10)

From the definition (10) and the Hermitian character
of I',=T.,, it follows that #,=2,7. The simplification
for conventional lossless waveguides, for which the
modal problem is self-adjoint, ®,t=®,, is due to the
fact that (10) then coincides with the orthogonality
relations and pas= Nabqs.

If representations, W, alternative to the scattering
representation (4) are introduced through

v, = UV, (11)

where (7 is a nonsingular transformation, the appropri-
ate weight operator p follows from the necessary invari-
ance of (9):

p=UtpU. (12)
Note P remains Hermitian. Subsequently the subscript
s will be dropped when the particular representation is
irrelevant.

Special simplifications in the form of £ result from
any symmetries the waveguide may possess in addition
to the translational symmetry assumed initially. The
most important such symmetry is invariance under re-
flection in any plane transverse to the guide axis. The
M =2N modes then occur in natural pairs, ®, and its
mirror image designated ®yi., with propagation con-
stants k, and — k,, respectively. The matrix P, therefore
has the appearance

(13)

in which @ and ® are Hermitian N XN submatrices.
The circular waveguide, employed later for numerical
results, also has rotational symmetries. A particular
consequence is that all terms in # coupling the low-loss
H,, (TEy,) modes to the remaining mode types of the
guide vanish.

1T11. OrTiMAL TRANSMISSION

Consider the utilization of a section of dissipative
waveguide for the transmission of power in such manner
that the {raction of the input power absorbed by the
guide is minimized. An efficiency may be defined by the
power ratio

Pulz) (1Y, pTY)

- = =T 14
Puv(%) (\_I_'a ?‘I_’) )

77("7’7 ZU) =
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wherein it is understood that ¥ =¥ (z,) and T=T(z, 20);
clearly, n may take on any real value. Now let ¥ be
constrained so that

¥, p¥) = 1, (15)

then minimum loss corresponds to the maximum value
of 4, and for passive guides n<1.

The excitations, subject to the constraint (15), about
which 7 is stationary are among the solutions of

o{ (¥, T+pT¥) — 0[(¥, pT) — 1]} =0 (16)
without special constraints. These particular excitations
are solutions of the weighted eigenvalue problem

[T*fT — 07?]@7 =0 17
which may be normalized to satisly (13). Substitution
into (14) yields 7=46,. Hence the maximum such eigen-
value 8, is the maximum efficiency, and the correspond-
ing eigenvector proportional to the required excitation.

It is clear that only real eigenvalues can be inter-
preted as efficiencies, and the eigenvalues 8, were tacitly
assumed real. All eigenvalues for which the correspond-
ing eigenvector may be normalized as required are in-
deed real, for

(18a)
(18b)

(T+PT@T’ @‘J - (Q% T+PT@“/) =0
(97* - 97) (@7; P@v) = 0.

This formalism has also been employed in connection
with conventional 2N-port networks, and additional
interesting results applicable to this special case have
been obtained.*?

IV. NuMERICAL RESULTS

The general theory of the preceding sections was ap-
plied to circular waveguide. This type of guide has pres-
ently aroused wide interest in connection with low-loss
transmission via the circular electric, 7.e., the Hy, modes.
Dissipation was introduced through specification of a
complex surface impedance boundarv condition at the
guide wall, radius a,

E=Z-HX. (19)

Correspondence with the metallic waveguide is estab-
lished on setting

wo k(1 — 4 )
PRl BZV/ :
€p 2 Moow

+L. B. Felsen and W. K. Kahn, Proc. Symp. on Maillimeter
Inges, Polytechuic Inst. of Brooklyn, N. Y.; March 31, April 1, 2,
1959.

8 W. K. Kahn, “A Theoretical and Experimental Investigation in
Multimode Network and Waveguide Transmission,” D.E.E. disser-
tation, Polytechnic Inst. of Brooklyn, N. Y.; June, 1960.

(20)
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where 2=w+/uge, and o is the conductivity (ohm-cm)~
of the guide walls. Only selected results are given here;
for details of calculation as well as additional computa-
tions reference may be had to the original dissertation.’

As was previously indicated, due to the symmetries
of the guide the Hy, modes may be treated independ-
ently of anv other mode type. The general nature of the
results are illustrated by Figs. 1 and 2. In Fig. 1 the .
efficiency in optimal transmission utilizing the first two
such modes (M =2), propagating in the -}z direction,
7y, 18 compared with conventional transmission utilizing
only the first of these modes n;. The ratio

(2, 20) — 11(5, 20)
m(Z, ZO)

Mz, 20) = (21)

n
t

EFFICIENCY RATIO, M(PER CENT)

00915% —»
05 o I's 20 25 30 35 40 45
LENGTH OF GUIDE , z/a(GUIDE RADI)

o

Fig. 1—Relative efficiency of optimal direct-wave transmission \.

LENGTH OF SECTION AS PARAMETER, z/&

'\\8 EXCITATION\ RATIO, Im {®s2/®g}

M= 2
ka = 900
20 3.
o 2 ‘ > =000
20
X 1 3 1
-0l 0 01 02 03 04 05

EXCITATION RATIO, Re {@,,/0}

Fig. 2—Excitation in optimal direct-wave transmission, H,,.

TABLE I

“ Asymptotic Efficiency Ratio, A =)
ka |

‘ M=2 M=3

9 0.091

14 0.088 0.118
16 0.090 0.118
18 0.088 0.115
20 0.089 0.117
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plotted as a function of (z—z)/a for the values kg =9.0
and 6/2a¢=0.010. Even {or this rather dissipative guide
the improvement is seen to be slight. The asymptotic
value of N« ) approached as (z—zn)/a— = is indicated
by the arrow at the lower right. In Fig. 2 the ratio of the
two components of the excitation W,(z,) =0, . are
plotted in the complex plane with (s—z0)/a as a paramn-
eter for the same values of ke and §/2¢. For short
lengths of guide the ratio M is increased by a factor of
about 5 if the reflected waves are also optimally ad-
justed, 7.c., M =2N =4 modes (two waves propagating
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in the 4z and two in the —z direction) are employed.
The asymptotic value of N has been computed for two

and three modes propagating in the —+z direction for

several values of ka. There are listed in Table I.
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Further Considerations on Fabry-Perot
Type Resonators

WILLIAM CULSHAWS{, SENIOR MEMBER, IRE

Summary—An integral equation valid for Fabry-Perot type
resonators with reflectors of arbitrary curvature and spacing is de-
rived, and equations for the planar, confocal, and spherical geometries
are considered further. A numerical iteration method is used to solve
the equations, and the properties of the various solutions for the dif-
ferent kernels are discussed. Results show that the confocal type has
the lowest diffraction loss, and that the losses in the planar- and
spherical-type geometries are identical, as are the normal mode
field distributions over the reflectors, apart from a change in sign of
the phase angle. Variational methods are applied to give results for
the eigenvalues of the planar geometry with great facility, particularly
for cases where the eigenvalues are closely spaced. Some potential
uses and the respective merits of the resonators are briefly men-
tioned.

I. INTRODUCTION

REE-SPACE resonators, analogous to the optical
FFabry—Perot interferometer, continue to play a

dominant role in measurements and physical de-
vices for very short microwaves, and also in the new
devices for producing coherent light [1]-[4]. Previous
work has discussed the application of this interferometer
to millimeter wavelengths [S], [6], an important result
being that coupling to such resonators could be effected
by a whole series, or grating, of coupling holes over the
area of the metallic reflector. Such a method can obvi-
ously be applied to reflectors of arbitrary shape [7], and
is most useful for very short microwaves where optical
methods, such as multilayer dielectric films, are not easy

* Received January 22, 1962; revised manuscript received May 14,

T.Microwave Physics Laboratory, General Telephone and Elec-
tronics [.aboratories, Incorporated, Palo Alto, Calif

to apply. The planar type of reflector system, due to
the absence of mode degeneracy, possesses some ad-
vantages in routine measurements of wavelength and
dielectric constants [8]. Diffraction losses, though
larger for given dimensions than those of the confocal-
type resonator [0], can still be made small at the shorter
wavelengths, and their effect on measurements reduced.
However, for a given wavelength and reflector size, such
losses do limit the Q value obtainable, and for some pur-
poses such as filter applications, and threshold condi-
tions in lasers, the confocal type may be preferable.
However, the planar geometry, though more critical in
adjustment and in the degree of flatness required,
readily permits single-mode operation, and potentially
gives a larger power output than the confocal.

One of the dithculties in evaluating the quality of
these free-space resonators is that of diffraction. This
leads to diffraction losses and to phase changes which
differ slightly from those corresponding to plane wave
propagation. The application of integral equations for
the solution of such problems was indicated by Goubau
and Schwering in their work on the guided propagation
of electromagnetic wave beams [10], [11]. Fox and Li
[12] also considered various resonator types, and set up
the integral equations using the Huygens-Kirchhoff dif-
fraction theory. Numerical solutions for the eigenvalues
and eigenfunctions, or field distribution, were obtained
by computing the steady state reached after a large
number of bounces between the reflectors. Boyd and
Gordon [13] also considered the confocal type resonator
in some detail. This arrangement is somewhat unique



